Cooperative Games

Lecture 5: The nucleolus

Stéphane Airiau

ILLC - University of Amsterdam

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 1)

Excess of a coalition

Definition (Excess of a coalition)

Let (N,v) be a TU game, $\mathfrak{C} \subseteq N$ be a coalition, and x be a payoff distribution over N. The excess $e(\mathfrak{C},x)$ of coalition \mathcal{C} at x is the quantity $e(\mathcal{C}, x) = v(\mathcal{C}) - x(\mathcal{C})$.

An example: let $N = \{1, 2, 3\}$, $C = \{1, 2\}$, $v(\{1, 2\}) = 8$, $x = \langle 3, 2, 5 \rangle$, $e(\mathcal{C},x) = v(\{1,2\}) - (x_1 + x_2) = 8 - (3+2) = 3.$

We can interpret a positive excess ($e(\mathcal{C},x)\geqslant 0$) as the amount of $\boldsymbol{dissatisfaction}$ or $\boldsymbol{complaint}$ of the members of $\boldsymbol{\mathfrak{C}}$ from the allocation x.

We can use the excess to define the core: $Core(N,v) = \{x \in \mathbb{R}^n \mid x \text{ is an imputation and } \forall C \subseteq N, e(C,x) \leq 0\}$

This definition shows that no coalition has any complaint: each coalition's demand can be granted.

Definition (lexicographical order of $\mathbb{R}^m \geqslant_{lex}$)

Let \geq_{lex} denote the **lexicographical** ordering of \mathbb{R}^m , i.e., $\forall (x,y) \in \mathbb{R}^m$, $x \geqslant_{lex} y$ iff x=v or $\exists t \text{ s. t. } 1 \leqslant t \leqslant m \text{ and } \forall i \text{ s. t. } 1 \leqslant i < t \text{ } x_i = y_i \text{ and } x_t > y_t$

example: $\langle 1,1,0,-1,-2,-3,-3\rangle \geqslant_{lex} \langle 1,0,0,0,-2,-3,-3\rangle$ Let l be a sequence of m reals. We denote by l^{\blacktriangleright} the reordering of l in decreasing order.

In the example, $e(x) = \langle -3, -3, -2, -1, 1, 1, 0 \rangle$ and then $e(x)^{\triangleright} = \langle 1, 1, 0, -1, -2, -3, -3 \rangle.$

Hence, we can say that y is better than x by writing $e(x)^{\blacktriangleright} \geqslant_{lex} e(y)^{\blacktriangleright}$.

Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 7

Definition (Nucleolus)

Let (N, v) be a TU game. Let $\Im mp$ be the set of all imputations. The **nucleolus** Nu(N,v) is the set

 $Nu(N,v) = \left\{ x \in \Im mp \mid \forall y \in \Im mp \ e(y)^{\triangleright} \geqslant_{lex} e(x)^{\triangleright} \right\}$

Today

- We consider one way to compare two imputations.
- We define the Nucleolus and look at some properties.
- We prove important properties of the nucleolus, which requires some elements of analysis.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 2

$$\begin{array}{l} N = \{1,2,3\}, \ v(\{i\}) = 0 \ \text{for} \ i \in \{1,2,3\} \\ v(\{1,2\}) = 5, \ v(\{1,3\}) = 6, \ v(\{2,3\}) = 6 \\ v(N) = 8 \end{array}$$

Let us consider two payoff vectors $x = \langle 3, 3, 2 \rangle$ and $y = \langle 2, 3, 3 \rangle$. Let e(x) denote the sequence of excesses of all coalitions at x.

$x = \langle 3, 3, 2 \rangle$		
coalition C	$e(\mathcal{C},x)$	
{1}	-3	
{2}	-3	
{3}	-2	
{1,2}	-1	
{1,3}	1	
{2,3}	1	
{1,2,3}	0	

$y = \langle 2, 3, 3 \rangle$		
coalition C	<i>e</i> (C, y)	
{1}	-2	
{2}	-3	
{3}	-3	
{1,2}	0	
{1,3}	1	
{2,3}	0	
{1,2,3}	0	
r or 1/2 Let us write th		

Which payoff should we prefer? x or y? Let us write the excess in the decreasing order (from the greatest excess to the smallest)

 $\langle 1, 1, 0, -1, -2, -3, -3 \rangle$

 $\langle 1.0.0.0.-2.-3.-3 \rangle$

Stéphane Airiau (ILLC) - Cooperative Games

Some properties of \leq_{lex} and its strict version

- $\forall x \in \mathbb{R}^m \ x \leqslant_{lex} x^{\blacktriangleright}$
- \circ $\forall x \in \mathbb{R}^m$ and any permutation σ of $\{1, ..., m\}$, $\sigma(x) \leqslant_{lex} x^{\blacktriangleright}$
- $\forall x, y, u, v \in \mathbb{R}^m \text{ and } \alpha > 0$
 - $\circ \ x \leqslant_{lex} y \Rightarrow \alpha x \leqslant_{lex} \alpha y$

 - $\begin{array}{l} \circ \ x <_{lex} y \Rightarrow \alpha x <_{lex} \alpha y \\ \circ \ (x \leqslant_{lex} y \wedge u \leqslant_{lex} v) \Rightarrow x + u \leqslant_{lex} y + v \\ \circ \ (x \leqslant_{lex} y \wedge u \leqslant_{lex} v) \Rightarrow x + u <_{lex} y + v \end{array}$
 - $x \le_{lex} y$ we cannot conclude anything for the comparison between $-\alpha x$ and $-\alpha y$.

Stéphane Airiau (ILLC) - Cooperative Gam

Lecture 5: The nucleolus 6

An alternative definition in terms of objections and counter-objections

Let (N,v) be a TU game. Objections are made by coalitions instead of individual agents. Let $P \subseteq N$ be a coalition that expresses an objection.

A pair (P,y), in which $P \subseteq N$ and y is an imputation, is an **objection** to x iff e(P,x) > e(P,y).

Our excess for coalition P is too large at x, payoff y reduces

A coalition (Q,y) is a **counter-objection** to the objection (P,y)when e(Q,y) > e(Q,x) and $e(Q,y) \ge e(P,x)$.

Our excess under y is larger than it was under x for coalition Q! Furthermore, our excess at y is larger than what your excess was at x!

An imputation fails to be stable if the excess of some coalition P can be reduced without increasing the excess of some other coalition to a level at least as large as that of the original excess of

Stéphane Airiau (ILLC) - Cooperative Games

Definition (Nucleolus)

Let (N, v) be a TU game. The **nucleolus** is the set of imputations x such that for every objection (P,y), there exists a counter-objection (Q, y).

M.J. Osborne and A. Rubinstein. A course in game theory, MIT Press,

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 9)

Definition (Nucleolus)

A payoff vector x is in the nucleolus of the game (N,v)if it is the solution of optimization programs $O_1,...,O_{|N|}$ where these programs are defined recursively as fol-

$$(O_1) \left\{ \begin{array}{l} \text{minimize } \epsilon \\ \text{subject to } \sum_{i \in S} x_i \geqslant v(S) - \epsilon \ \, \forall S \subset N \end{array} \right.$$

$$(O_i) \left\{ \begin{array}{l} \text{minimize } \epsilon \\ \text{subject to} \left\{ \begin{array}{l} \sum_{j \in S} x_j \geqslant v(S) - \epsilon_0 \ \forall S \in S_1 \\ \vdots \\ \sum_{j \in S} x_j \geqslant v(S) - \epsilon_{i-1} \ \forall S \in S_{i-1} \setminus S_{i-2} \\ \sum_{j \in S} x_j \geqslant v(S) - \epsilon \ \forall S \in 2^N \setminus S_{i-1} \end{array} \right.$$

where ϵ_{i-1} is the optimal objective value to program O_{i-1} and S_{i-1} is the set of coalitions for which the constraints are realized as equalities in the optimal solution to O_{i-1} .

Stéphane Airiau (ILLC) - Cooperative Games

Let (N,v) be a superadditive game and $\Im mp$ be its set of imputations. Then, $\Im mp \neq \emptyset$.

Let (N,v) be a superadditive game. Let x be a payoff distribution defined as follows:

 $x_i = v(\{i\}) + \frac{1}{|N|} \left(v(N) - \sum_{j \in N} v(\{j\}) \right).$

- $\circ \ v(N) \textstyle \sum_{j \in N} v(\{j\}) > 0 \ \text{since} \ (N,v) \ \text{is superadditive}.$
- \circ It is clear x is individually rational \checkmark
- It is clear x is efficient

 ✓

Hence, $x \in \Im mp$.

Theorem (Non-emptyness of the nucleolus)

Let (N,v) be a TU game, if $\Im mp \neq \emptyset$, then the nucleolus Nu(N,v) is **non-empty**.

Stéphane Airiau (ILLC) - Cooperative Games

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 13

П

Element of Analysis

- **bounded set:** A subset $X \subseteq \mathbb{R}^m$ is **bounded** if it is contained in a ball of finite radius, i.e. $\exists c \in \mathbb{R}^m$ and $\exists r \in \mathbb{R}^+ \text{ s.t. } \forall x \in X \mid |x - c|| \leq r.$
- **compact set:** A subset $X \subseteq \mathbb{R}^m$ is a **compact** set iff from all sequences in X, we can extract a convergent sequence in X.
- A set is **compact** set of \mathbb{R}^m iff it is **closed** and **bounded**.
- **convex set:** A set *X* is convex iff $\forall (x,y) \in X^2$, $\forall \alpha \in [0,1]$, $\alpha x + (1 - \alpha)y \in X$ (i.e. all points in a line from x to y is contained in X).
- **continuous function:** Let $X \subseteq \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^m$. f is **continuous at** $x_0 \in X$ iff $\forall \epsilon \in \mathbb{R}$, $\epsilon > 0$, $\exists \delta \in \mathbb{R}$, $\delta > 0$ s.t. $\forall x \in X$ s.t. $||x x_0|| < \delta$, we have $||f(x) f(x_0)|| < \epsilon$, i.e. $\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in X \quad ||x - x_0|| < \delta \Rightarrow ||f(x) - f(x_0)|| < \epsilon.$

a detour: ε-core and least-core

Definition (ε -core)

A payoff distribution is in the ϵ -core of the superadditive game (N,v) for some $\in \mathbb{R}$ if $x(C) \geqslant v(\mathcal{C}) - \epsilon$.

Definition (least-core)

Let $e^*(G) = \inf\{e \in \mathbb{R} | e\text{-core of } G \text{ is non-empty }\}$ The **least-core** of G is the $\epsilon^*(G)$ -core.

$$(LP) \left\{ \begin{array}{l} \text{minimize } \epsilon \\ \text{subject to} \left\{ \begin{array}{l} x_i \geqslant 0 \text{ for each } i \in N \\ \sum_{j \in N} x_j = v(N) \\ \sum_{j \in \mathcal{C}} x_j \geqslant v(\mathcal{C}) - \epsilon \text{ for each } \mathcal{C} \subseteq N \end{array} \right. \right.$$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 10

Theorem

Let (N,v) be a TU game with a non-empty core. Then $Nu(N,v) \subseteq Core(N,v)$

Proof

Stéphane Airiau (ILLC) - Cooperative Games

This will be part of homework 2

Element of Analysis

Let $E = \mathbb{R}^m$ and $X \subseteq E$. ||.|| denote a distance in E, e.g., the euclidean distance.

We consider functions of the form $u: \mathbb{N} \to \mathbb{R}^m$. Another viewpoint on u is an infinite **sequence** of elements indexed by natural numbers $(u_0, u_1, ..., u_k, ...)$ where $u_i \in X$.

- \circ convergent sequence: A sequence (u_t) converges to $l \in \mathbb{R}^m$ iff for all $\epsilon > 0$, $\exists T \in \mathbb{N}$ s.t. $\forall t \geqslant T$, $||u_t - \overline{l}|| \leqslant \epsilon$.
- \circ extracted sequence: Let (u_t) be an infinite sequence and $f: \mathbb{N} \to \mathbb{N}$ be a monotonically increasing function. The sequence v is extracted from u iff $v = u \circ f$, i.e., $v_t = u_{f(t)}$.
- **closed set:** a set *X* is closed if and only if it contains all of its limit points.

the limit points. i.e. for all converging sequences $(x_0, x_1...)$ of elements in X, the limit of the sequence has to be in X as well. An example: if $X = (0,1], (1,\frac{1}{2},\frac{1}{3},\frac{1}{4},...,\frac{1}{n},...)$ is a converging sequence. However, 0 is not in X, and hence, X is not closed. "A closed set contains its borders".

Stéphane Airiau (ILLC) - Cooperative Games

Element of Analysis

Let $X \subseteq \mathbb{R}^n$.

Thm A₁ If $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous and $X \subseteq E$ is a non-empty compact subset of \mathbb{R}^n ,

then f(X) is a non-empty compact subset of \mathbb{R}^m . Thm A_2 Extreme value theorem: Let X be a non-empty compact subset of \mathbb{R}^n , $f: X \to \mathbb{R}$ a **continuous** function. Then f is bounded and it reaches its supremum.

Thm A₃ Let *X* be a non-empty compact subset of \mathbb{R}^n . $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

Stéphane Airiau (ILLC) - Cooperative Games

Proof of non-emptyness of the nucleolus

Assume we have the following theorems 1 and 2 (we will prove them in the next slide).

Theorem (1)

Let *A* be a non-empty compact subset of \mathbb{R}^m . $\{x \in A \mid \forall y \in A \ x \leq_{lex} y\}$ is non-empty.

Theorem (2)

Assume we have a TU game (N,v), and consider its set $\mathbb{J}mp$. If $\mathbb{J}mp \neq \emptyset$, then set $B = \{e(x)^{\blacktriangleright} \mid x \in \mathbb{J}mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|\mathbb{N}|}}$

Let us take a TU game (N,v) and let us assume $\mathfrak{Im}p \neq \emptyset$. Then B in theorem 2 is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$. Now let A in theorem 1 be B in theorem 2. So $\{e(x)^{\blacktriangleright} \mid (x \in \mathfrak{Im}p) \land (\forall y \in \mathfrak{Im}p \ e(x)^{\blacktriangleright} \leqslant_{lex} e(y)^{\blacktriangleright})\}$ is non-empty. From this, it follows that: $Nu(N,v) = \{x \in \mathfrak{Im}p \ | \ \forall y \in \mathfrak{Im}p \ e(y)^{\blacktriangleright} \geqslant_{lex} e(x)^{\blacktriangleright}\} \neq \emptyset$. \checkmark

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 17

Proof of theorem 1

For a non-empty compact subset A of \mathbb{R}^m , we need to prove that the set $\{x \in A \mid \forall y \in A \ x \leqslant_{lex} y\}$ is non-empty.

First, let $\pi_i : \mathbb{R}^m \to \mathbb{R}$ the projection function s.t. $\pi_i(x_1, \dots, x_m) = x_i$.

Then, let us define the following sets:

• $A_0 = A_0$

• .

 $A_0 = A$ $A_{i+1} = \arg\min_{x \in A} \pi_{i+1}(x)$

 $i \in \{0, 1, \dots, m-1\}$

- $A_0 = A$ • $A_1 = \operatorname{argmin}_{x \in A} \pi_1(x)$ is the set of elements in A with the smallest first entry in the sequence.
- on $A_2 = \operatorname{argmin}_{x \in A_1} \pi_2(x)$ composed of the elements that have the smallest second entry among the elements with the smallest first entry
- $\bullet \dots$ $\bullet A_m = \{x \in A \mid \forall y \in A \ x \leqslant_{lex} y \}$

We want to prove by induction that each A_i is non-empty compact subset of \mathbb{R}^m for $i \in \{1, ..., m\}$ to prove that A_m is non-empty.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus

Proof of theorem 1

Thm A₃: Let X be a non-empty compact subset of \mathbb{R}^n .

 $f: X \to \mathbb{R}$ is continuous iff for every closed subset $B \subseteq \mathbb{R}$, the set $f^{-1}(B)$ is compact.

 $A_{i+1} =$

 \bigcap A_i

According to Thm A₃, it is a compact subset of \mathbb{R}^m

is a compact subset of \mathbb{R}^m since the intersection of two closed sets is closed and in \mathbb{R}^m , and a closed subset of a compact subset of \mathbb{R}^m is a compact subset of \mathbb{R}^m

Hence A_{i+1} is a non-empty compact subset of \mathbb{R}^m and the proof is complete.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 21

For a TU game (N,v), the $Nu(N,v) \neq \emptyset$ when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement.

Theorem

The nucleolus has at most one element

In other words, there is **one** agreement which is stable according to the nucleolus.

To prove this, we need theorems 3 and 4.

Theorem (3)

Let A be a non-empty convex subset of \mathbb{R}^m

Then the set $\{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$ has at most one element.

Theorem (4)

Stéphane Airiau (ILLC) - Cooperative Games

Let (N,v) be a TU game such that $\Im mp \neq \emptyset$.

(i) $\Im mp$ is a non-empty and convex subset of $\mathbb{R}^{|N|}$

(ii) $\{e(x) \mid x \in \Im mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$

Proof of theorem 2

Let (N,v) be a TU game and consider its set $\Im mp$. Let us assume that $\Im mp \neq \emptyset$ to prove that $B = \{e(x)^{\blacktriangleright} \mid x \in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

First, let us prove that $\Im mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$. \circ $\Im mp$ non-empty by assumption.

- \circ To see that $\Im mp$ is bounded, we need to show that for all i, x_i is bounded by some constant (independent of x). We have $v(\{i\}) \leqslant x_i$ (ind. rational) and x(N) = v(N) (efficient). Then $x_i + \sum_{j=1, j \neq i}^n v(\{j\}) \leqslant v(N)$, hence $x_i \leqslant v(N) \sum_{j=1, j \neq i}^n v(\{j\})$.
- \circ $\Im mp$ is closed (the boundaries of $\Im mp$ are members of $\Im mp$). This proves that $\Im mp$ is a non-empty compact subset of $\mathbb{R}^{|N|}$.

 $\begin{array}{ll} \textbf{Thm A}_1 \ \text{If} \ f\colon E\to \mathbb{R}^m \ \text{is continuous, } X\subseteq E \ \text{is a non-empty compact subset} \\ \text{of } \mathbb{R}^n, \ \text{then} \ f(X) \ \text{is a non-empty compact subset of } \mathbb{R}^m. \end{array}$

 $e()^{\blacktriangleright}$ is a continuous function and $\Im mp$ is a non-empty and compact subset of $\mathbb{R}^{2^{|N|}}$. Using thm A_1 , $e(\Im mp)^{\blacktriangleright}=\{e(x)^{\blacktriangleright}|x\in \Im mp\}$ is a non-empty compact subset of $\mathbb{R}^{2^{|N|}}$.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 18

Proof of theorem 1

- \circ $A_0 = A$ is non-empty compact of \mathbb{R}^m by hypothesis \checkmark .
- Let us assume that A_i is a non-empty compact subset of R^m and let us prove that A_{i+1} is a non-empty compact subset of R^m. π_{i+1} is a continuous function and A_i is a non-empty compact subset of R^m.

Thm A₂: Extreme value theorem: Let *X* be a non-empty compact subset of \mathbb{R}^m , $f: X \to \mathbb{R}$ a **continuous** function.

Using the extreme value theorem, $\min_{x\in A_i}\pi_{i+1}(x)$ exists and it is reached in A_i , hence $\operatorname{argmin}_{x\in A_i}\pi_{i+1}(x)$ is non-empty. Now, we need to show it is compact.

We note by $\pi_i^{-1}: \mathbb{R} \to \mathbb{R}^m$ the inverse of π_i . Let $\alpha \in \mathbb{R}$, $\pi_i^{-1}(\alpha)$ is the set of all vectors $\langle x_1, \dots, x_{i-1}, \alpha, x_{i+1}, \dots, x_m \rangle$ s.t. $x_j \in \mathbb{R}$, $j \in \{1, \dots, m\}$, $j \neq i$. We can rewrite A_{i+1} as:

$$A_{i+1} = \pi_{i+1}^{-1} \left(\min_{x \in A_i} \pi_{i+1}(x) \right) \bigcap A_i$$

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 20

For a TU game (N,v) the nucleolus Nu(N,v) is non-empty when $\Im mp \neq \emptyset$, which is a great property as agents will always find an agreement. But there is more!

Theorem

The nucleolus has at most one element

In other words, there is **one** agreement which is stable according to the nucleolus.

Stéphane Airiau (ILLC) - Cooperative Game

Lecture 5: The nucleolus 22

Proof of Theorem 3

Let A be a non-empty convex subset of \mathbb{R}^m , and $M^{in} = \{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$. We now prove that $|M^{in}| \leq 1$.

Towards a contradiction, let us assume M^{in} has at least two elements x and y, $x \neq y$. By definition of M^{in} , we must have $x^{\blacktriangleright} = y^{\blacktriangleright}$.

Let $\alpha \in (0,1)$ and σ be a permutation of $\{1,\dots,m\}$ such that $(\alpha x + (1-\alpha)y)^{\blacktriangleright} = \sigma(\alpha x + (1-\alpha)y) = \alpha \sigma(x) + (1-\alpha)\sigma(y)$. Let us show by contradiction that $\sigma(x) = x^{\blacktriangleright}$ and $\sigma(y) = y^{\blacktriangleright}$.

Let us assume that either $\sigma(x)<_{lex}x^{\blacktriangleright}$ or $\sigma(y)<_{lex}y^{\blacktriangleright}$, it follows that $\alpha\sigma(x)+(1-\alpha)\sigma(y)<_{lex}\alpha x^{\blacktriangleright}+(1-\alpha)y^{\blacktriangleright}=x^{\blacktriangleright}$. Since A is convex, $\alpha x+(1-\alpha)y\in A$. But this is a contradiction because by definition of M^{in} , $\alpha x+(1-\alpha)y\in A$ cannot be strictly smaller than x^{\blacktriangleright} , y^{\blacktriangleright} in A. This proves $\sigma(x)=x^{\blacktriangleright}$ and $\sigma(y)=y^{\blacktriangleright}$.

Since $x^{\triangleright} = y^{\triangleright}$, we have $\sigma(x) = \sigma(y)$, hence x = y. This contradicts the fact that $x \neq y$. Hence, M^{in} cannot have at least two elements, and $|M^{in}| \leq 1$.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 24

Proof Theorem 4 (i)

Let (N,v) be a TU game s.t. $\Im mp \neq \emptyset$ (in case $\Im mp = \emptyset$, $\Im mp$ is trivially convex). Let $(x,y) \in \Im mp^2$, $\alpha \in [0,1]$. Let us prove $\Im mp$ is convex by showing that $u = \alpha x + (1-\alpha)y \in \Im mp$, i.e., individually rational and efficient.

Individual rationality: Since x and y are individually rational, for all agents i

all agents i, $u_i=\alpha x_i+(1-\alpha)y_i\geqslant \alpha v(\{i\})+(1-\alpha)v(\{i\})=v(\{i\}).$ Hence u is individually rational.

Efficiency: Since x and y are efficient, we have $\sum_{i \in N} u_i = \sum_{i \in N} \alpha x_i + (1 - \alpha) y_i \geqslant \alpha \sum_{i \in N} x_i + (1 - \alpha) \sum_{i \in N} y_i$ $\sum_{i \in N} u_i \geqslant \alpha v(N) + (1 - \alpha) v(N) = v(N), \text{ hence } u \text{ is efficient.}$

Thus, $u \in \Im mp$.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 25

Proof that the nucleolus has at most one element

Let (N,v) be a TU game, and $\Im mp$ its set of imputations. **Theorem 4(ii):** $\{e(x) \mid x \in \Im mp\}$ is a non-empty convex subset of $\mathbb{R}^{2^{|N|}}$.

Theorem 3: If *A* is a non-empty convex subset of \mathbb{R}^m , then the set $\{x \in A \mid \forall y \in A \ x^{\blacktriangleright} \leq_{lex} y^{\blacktriangleright}\}$ has at most one element.

Applying theorem 3 with $A = \{e(x) \mid x \in \Im mp\}$ we obtain $B = \{e(x) \mid x \in \Im mp \land \forall y \in \Im mp \ e(x)^{\blacktriangleright} \leqslant_{lex} e(y)^{\blacktriangleright}\}$ has at most one element.

B is the image of the nucleolus under the function *e*. We need to make sure that an e(x) corresponds to at most one element in $\Im mp$. This is true since for $(x,y)\in \Im mp^2$, we have $x\neq y\Rightarrow e(x)\neq e(y)$.

Hence $Nu(N,v) = \{x \mid x \in \Im mp \land \forall y \in \Im mp \ e(x)^{\blacktriangleright} \leqslant_{lex} e(y)^{\blacktriangleright}\}$ has at most one element!

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus

Coming next

 The kernel, also a member of the bargaining set family, also based on the excess.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 29

Proof Theorem 4 (ii)

Let (N,v) be a TU game and $\Im mp$ its set of imputations. We need to show $\{e(z)\mid z\in \Im mp\}$ is a non-empty convex subset of \mathbb{R}^m . Let $(x,y)\in \Im mp^2,\ \alpha\in [0,1],\$ and $\mathscr{C}\subseteq N$ and we consider the sequence $\alpha e(x)+(1-\alpha)e(y),\$ and we look at the entry corresponding to coalition \mathscr{C} .

$$\begin{array}{lll} (\alpha e(x)+(1-\alpha)e(y))_{\mathfrak{S}} &=& \alpha e(\mathfrak{S},x)+(1-\alpha)e(\mathfrak{S},y) \\ &=& \alpha(v(\mathfrak{S})-x(\mathfrak{S}))+(1-\alpha)(v(\mathfrak{S})-y(\mathfrak{S})) \\ &=& v(\mathfrak{S})-(\alpha x(\mathfrak{S})+(1-\alpha)y(\mathfrak{S})) \\ &=& v(\mathfrak{S})-([\alpha x+(1-\alpha)y](\mathfrak{S})) \\ &=& e(\alpha x+(1-\alpha)y,\mathfrak{S}) \end{array}$$

Since the previous equality is valid for all $\mathfrak{C}\subseteq N$, both sequences are equal: $\alpha e(x)+(1-\alpha)e(y)=e(\alpha x+(1-\alpha)y)$.

Since $\Im mp$ is convex, $\alpha x + (1 - \alpha)y \in \Im mp$, it follows that $e(\alpha x + (1 - \alpha)y) \in \{e(z) \mid z \in \Im mp\}$. Hence, $\{e(z) \mid z \in \Im mp\}$ is convex.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 26

Summary

- We defined the excess of a coalition at a payoff distribution, which can model the complaints of the members in a coalition.
- We used the ordered sequence of excesses over all coalitions and the lexicographic ordering to compare any two imputations.
- We defined the nucleolus for a TU game.
- pros: If the set of imputations is non-empty, the nucleolus is non-empty.
 - non-empty.

 The nucleolus contains at most one element.
 - When the core is non-empty, the nucleolus is contained in the core.

cons: Difficult to compute.

Stéphane Airiau (ILLC) - Cooperative Games

Lecture 5: The nucleolus 28